A Comparison of Induction Motor Speed Estimation using Conventional MRAS and AI- Based MRAS with a Dynamic Reference Model

نویسندگان

  • Chao Yang
  • J. W. Finch
چکیده

− The Model Reference Adaptive System (MRAS) is probably the most widely applied speed sensorless drive control scheme. This paper compares induction motor speed estimation using conventional MRAS and AI-based MRAS with Stator Resistance Compensation. A conventional mathematical model based MRAS speed estimation scheme can give a relatively precise speed estimation result, but errors will occur during low frequency operation. Furthermore, it is also very sensitive to machine parameter variations. However, an AI-based MRAS-based system with a Stator Resistance Compensation model can improve the speed estimation accuracy and is relatively robust to parameter variations even at an extremely low frequency. Simulation results using a validated machine model are used to demonstrate the improved behaviour. Index Terms− Dynamic Reference Model, Model Reference Adaptive System (MRAS), Neural Networks, Induction Motor Control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel MRAS Based Estimator for Speed-Sensorless Induction Motor Drive

In this paper, a novel stator current based Model Reference Adaptive System (MRAS) estimator for speed estimation in the speed-sensorless vector controlled induction motor drives is presented. In the proposed MRAS estimator, measured stator current of the induction motor is considered as a reference model. The estimated stator current is produced in an adjustable model to compare with the measu...

متن کامل

IS-MRAS With On-Line Adaptation Parameters Based on Type-2 Fuzzy LOGIC for Sensorless Control of IM

This paper suggests novel sensorless speed estimation for an induction motor (IM) based on a stator current model reference adaptive system (IS-MRAS) scheme. The IS-MRAS scheme uses the error between the reference and estimated stator current vectors and the rotor speed. Observing rotor flux and the speed estimating using the conventional MRAS technique is confronted with certain problems relat...

متن کامل

Sensorless Indirect Field Oriented Control of Single-sided Linear Induction Motor With a Novel Sliding Mode MRAS Speed Estimator

This paper proposes a new sliding mode control (SMC)  based model reference adaptive system (MRAS) for sensorless indirect field oriented control (IFOC) of a single-sided linear induction motor (SLIM). The operation of MRAS speed estimators dramatically depends on adaptation mechanism. Fixed-gain PI controller is conventionally used for this purpose which may fail to estimate the speed correctl...

متن کامل

Comparison of MRAS Based Rotor Resistance Estimator Using Reactive Power and Flux Based Techniques for Space Vector PWM Inverter Fed Induction Motor Drives

The performance of Vector Controlled Induction Motor drive depends on the accuracy of rotor resistance which will vary with temperature and frequency. The MRAS approach using reactive power and flux as a state variable for rotor resistance estimation makes MRAS computationally simpler and easy to design. In this paper, Rotor Flux based MRAS (RF-MRAS) and Reactive Power based MRAS (RP-MRAS) for ...

متن کامل

A Novel Algorithm for Rotor Speed Estimation of DFIGs Using Machine Active Power based MRAS Observer

This paper presents a new algorithm based on Model Reference Adaptive System (MRAS) and its stability analysis for sensorless control of Doubly-Fed Induction Generators (DFIGs). The reference and adjustable models of the suggested observer are based on the active power of the machine. A hysteresis block is used in the structure of the adaptation mechanism, and the stability analysis is performe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008